Browsed by
Tag: RNAi

Novel anti-cancer mechanism identified by shRNA/siRNA off-target effects

Novel anti-cancer mechanism identified by shRNA/siRNA off-target effects

Summary:

siRNA off-target effects takes an interesting turn for cancer research as reported in eLIFE by Putzbach et. al. Research unveiled a specific group of survival genes in cancer cells thanks to the off-target effects of siRNAs/shRNAs.

death receptor signaling pathways
CD95 highlighted in death receptor signaling pathways

 

CD95 is a death receptor that mediates apoptosis when bound to its ligand, CD95L or FasL. Known for its multiple tumour-promoting activities, it was not surprising that silencing both molecules by RNAi produced cancer cell death.

What was surprising –  death induced by C95/CD95L siRNAs/shRNAs did not work through CD95/CD95L at all. Three observations contributed to this conclusion:

  1. The toxicity correlated with siRNA/shRNA concentration

Using siRNAs at 0.1nM or expressing the shRNA in a miR-30 backbone (developed to reduce off-targets by expressing shRNAs at reduced levels) did not induce the same toxicity

 

  1. Removing the target did not affect siRNA/shRNA-induced toxicity

Excising the siRNA/shRNA binding sites on CD95/CD95L with CRISPR did not protect cells from toxicity induced by these siRNAs/shRNAs

 

  1. Restoring expression of the target did not rescue cells from siRNA/shRNA-induced toxicity

Introducing recombinant CD95/CD95L proteins or expressing siRNA-resistant versions of CD95/95L, did not rescue cells from toxicity induced by their siRNA/shRNAs

 

The case of shRNA/siRNA off-target effects

The evidence was pretty convincing that the toxic effects of the CD95/CD95L siRNA/shRNAs stemmed from off-target effects.

1. Step-wise mutations showed toxicity derived from the seed sequence 

siRNA sequence step-wise mutation shows siRNA off-target effects
siRNA sequence step-wise mutation

Substituting each base of the tox-inducing siRNA (siL3) with the non-toxic siRNA (siScr) sequence in a step-wise cumulative manner either from the seed end or the non-seed end, highlighted toxicity derived from the seed sequence. The seed sequence is a 6-base sequence at position 2 to 7 of the guide RNA strand and is responsible for defining the off-target profile of an siRNA (read this technote for more information)

2. Off-target survival genes identified by RNA-seq

An RNA-seq analysis of CD95 or CD95L shRNA-treated cells identified twelve genes with significantly altered expression levels – 11 downregulated, 1 upregulated:

Death induced by survival gene elimination identified by siRNA off-target effects
Genes regulated by toxic shRNA were important survival genes

 

It turns out that many of the downregulated genes were important for survival. Additionally, two recent genome-wide lethality screens independently identified six of these genes (highlighted in red). The authors therefore termed this form of CD95/CD95L siRNA/shRNA-induced cell death Death Induced by Survival Gene Elimination (DISE). Don’t we all love acronyms! As depicted, these genes mostly interfered with apoptosis, cell cycle, autophagy and senescence.

3. Survival genes targeted by miRNA-like activity of CD95/CD95L siRNA/shRNAs

Sylamer plots and seed matches to survival genes showing siRNA off-target effects
Survival genes were enriched for seed matches at the 3′ UTR to toxic shRNA

The seed sequence is what microRNAs (miRNAs) use to recognize and downregulate target genes. siRNAs/shRNAs can behave like miRNAs, contributing to the off-target activity. As shown by Sylamer plots, the seed sequence of toxic shRNAs (shL3 and shR6) were enriched in highly downregulated genes. The identified survival genes also contained multiple seed matches over their 3’ UTRs. That leaves little doubt that the CD95/CD95L shRNAs were hitting these genes through miRNA-like off-target activity.

Conclusion:

Once again, we see how siRNA off-target effects can impact experimental results. Though in this case, it actually helped identify relevant survival genes! Notably, siRNA off-target effects likely influence cell viability/proliferation data to a greater extent than other readouts since it is regulated by so many genes.

This is not an isolated report of siRNA off-targeting in cancer. Targets such as STK33 and MELK, identified with RNAi to be important in cancer progression, failed to show the same effects in experiments performed by different groups or alternative techniques. The controversy continues however as their effects on cancer activity continue to be reported.

How to avoid siRNA off-target effects

siPOOLs were developed to avoid siRNA off-target effects through high complexity pooling and optimized design. Phenotypes are therefore more clearly and reliably ascribed to loss-of-function of the target gene. The new siPOOL Cancer Toolbox now provides cancer researchers the ability to disrupt multiple genes reliably, with reduced risk of siRNA off-targets, in an affordable toolkit solution.

siTOOL top 100 cancer gene list for siPOOL Cancer Toolbox

We scoured the published literature for the most highly cited genes involved in multiple forms of cancer. Choose your target genes from our list of top 100 cancer-associated genes to build your own siPOOL Cancer Toolbox.  Notably, CD95, MELK and STK33 did not make the cut!

See our top 100 cancer gene list

Follow us or share this post:
CRISPR/Cas9 Screening – The “Copy-Number Effect”

CRISPR/Cas9 Screening – The “Copy-Number Effect”

Several CRISPR/Cas9 screens identifying essential genes in cancer cell lines have been performed to date (Shalem et al., 2014, Hart et al., 2015, Kiessling et al., 2016). These typically take the form of pooled screens where sgRNA libraries targeting all genes or subsets of genes are introduced in parallel into Cas9-expressing cells, at a single sgRNA per cell. The sgRNAs exert a negative or positive selection pressure on cells based on their impact on cell viability and proliferation. The most depleted or enriched sgRNA sequences are determined by next-generation sequencing, revealing relevant gene ‘hits’. Very similar to how pooled shRNA screens are performed.

From these screens, several groups have observed a worrying phenomenon: CRISPR gRNAs targeting genomic regions of high copy number amplification showed a striking reduction in cell proliferation/survival. Dr William Hahn’s group at the Dana Farber Institute was one of the first to characterize this in a publication last year involving a CRISPR/Cas9 screen on 33 cancer cell lines looking for essential genes. In total, 123411 unique sgRNAs were used targeting 19050 genes (6 sgRNAs/gene), 1864 miRNAs and 1000 non-targeting negative control sgRNAs.

What they discovered is a little worrying to say the least.

The figure shows two genomic regions in two different cell lines (SU86.86 and HT29). At genomic coordinates highlighted by the red box, 3 tracks are shown. Top, copy number from the Cancer Cell Line Encyclopaedia (CCLE) SNP arrays, red indicating above average ploidy and blue showing below; middle, CRISPR/Cas9 guide scores with purple trend line indicating the mean CRISPR guide score for each CN segment defined from the above track; bottom, RNAi gene-dependency scores. AKT2 and MYC, known driver oncogenes at these loci, respectively, are highlighted in orange. For RNAi data, shRNAs targeting AKT2 used in Project Achilles were not effective in suppressing AKT2 (hence the negative result).

 

Key findings:

  • A striking enrichment of negative CRISPR guide scores (i.e. sgRNAs that reduced cell proliferation/survival) for genes that reside in genomic regions of high copy-number amplification.

 

  • Genes identified in CRISPR that reduced survival, did not have the same effect when disrupted by RNAi in the same cell lines (this RNAi screen was done by the same group but published 2 years before).

 

  • This enrichment was seen also for unexpressed genes, i.e. genes not transcribed. Meaning the reduced survival was not due to loss-of-function of the targeted gene.

 

  • Even for regions with low absolute copy numbers, a significant reduction in survival was observed compared to non-targeting control sgRNAs. Furthermore, the effect was dose-dependent with greater copy number amplifications producing larger negative CRISPR guide scores.

Notably, the correlation between copy number and genes that were scored high on essentiality was also observed when looking at data from other studies (Hart et al., 2015). The “copy number effect” would therefore produce a high number of false positives in CRISPR screens for essential genes in cancer cell lines. The graph above shows just how big an effect this is. Comparing genes identified as essential in a CRISPR screen vs RNAi screen, increasingly essential CRISPR-identified genes were more likely to reside on copy number amplifications (defined as having average sample ploidy > 2). This effect was notably absent for RNAi-derived essential genes.

Aside from false positives, the increased noise due to “copy number effects” also increases false negatives. MET, a gene identified by shRNA screens, for example, failed to be picked out by CRISPR screens as it is located on a chromosome 7 amplicon (7q31) in MKN45 cells (gastric cancer cell line) where all other gRNAs within that amplicon also scored as essential.

The authors go on to explore mechanisms behind the “copy number effect”. They found it was attributed to a DNA damage response stimulated by excessive cutting by Cas9. This response appeared p53-dependent and induced cell cycle arrest at the G2 phase, explaining the anti-proliferative effect. A similar response was seen for promiscuous sgRNAs that cut at multiple sites, with effects being more pronounced when cuts were spread over several chromosomes as opposed to a single chromosome.

How to manage this?

So far, most simply avoid analysing hits where sgRNAs lie at amplified regions or target multiple sites (Wang et al., 2017). However, these regions of copy number amplifications have been implicated in cancer and may contain relevant hits. Several computational methods have therefore recently been developed to correct for “the copy number effect”. Hahn’s group developed a computational algorithm called CERES based on data obtained from CRISPR sgRNA screens in 342 cancer cell lines representing 27 cell lineages.

Novartis also developed a Local Drop Out (LDO) algorithm that corrects obtained data based on examining gRNAs scores at direct genomic neighbours. When multiple neighbouring genes show similar drop out scores, effects are assumed to be due to “copy number effects”. This method has the advantage of not requiring prior knowledge of copy number, however it does require a sufficient density of gRNAs to accurately capture “copy number effects”.  They also had an alternative method, Generalized Additive Model (GAM) where copy number was taken into account.

 

How the CERES Model Works

The Results – copy number dependency is reduced while preserving essentiality of cancer-specific genes such as KRAS

 

A step towards the right direction but the penetrance of this effect still raises some concerns:

  • Although false positives are reduced with these computational methods, it is difficult to recapture false negatives. This is dependent on the gRNA having a stronger phenotype compared to neighbouring gRNAs on the amplicon which is not always the case. The LDO method for example still failed to recapture MET.

 

  • Guide scores can vary with cell line, sgRNA and experimental conditions, making it difficult to apply the same counter-measures to every experiment.

 

  • Given multiple cut sites trigger the same effect, how do we ensure multiple sgRNAs when introduced into a cell are not inducing a similar response? This is difficult to control in pooled screens, and poses a limitation in multiplex screens. Synthetic lethality screens for example with sgRNAs targeting multiple genes, might be subject to a higher false positive rate.

 

  • With even diploid genes (copy number = 2) having statistically significant growth reduction compared to haploid gene loci, the challenge still remains to delineate a true loss-of-function over a non-specific cellular response.

 

  • Negative sgRNA controls have to be carefully selected. From the study, non-targeting controls had little impact on viability compared to most other sgRNAs. Controls targeting non-expressed genes or non-essential loci have been recommended as better controls.

 

  • Lastly, although this effect seems to apply mostly to cancer cell lines that undergo a high rate of gene amplifications, similar effects may extend to polyploid tissues such as the liver.

Hence as always gene function should be determined by a variety of methods. Using RNAi for example to affirm a CRISPR-knockout phenotype would add greater confidence to a hit. To avoid those RNAi-related false positives however, its probably best to use siPOOLs.

 

Source of figures:

Aguirre, A. J., Meyers, R. M., Weir, B. A., Vazquez, F., Zhang, C.-Z., Ben-David, U., … Hahn, W. C. (2016). Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting. Cancer Discovery, 6(8), 914 LP-929.

Meyers, R. M., Bryan, J. G., McFarland, J. M., Weir, B. A., Sizemore, A. E., Xu, H., … Tsherniak, A. (2017). Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. bioRxiv. Retrieved from http://biorxiv.org/content/early/2017/07/10/160861.abstract

Other relevant sources:

Munoz, D. M., Cassiani, P. J., Li, L., Billy, E., Korn, J. M., Jones, M. D., … Schlabach, M. R. (2016). CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. Cancer Discovery, 6(8), 900 LP-913. Retrieved from http://cancerdiscovery.aacrjournals.org/content/6/8/900.abstract

de Weck, A., Golji, J., Jones, M. D., Korn, J. M., Billy, E., McDonald, E. R., … Kauffmann, A. (2017). Correction of copy number induced false positives in CRISPR screens. bioRxiv. Retrieved from http://biorxiv.org/content/early/2017/06/23/151985.abstract

 

Want to receive regular blog updates? Sign up for our siTOOLs Newsletter:

Follow us or share this post:
siRNA vs shRNA – applications and off-targeting

siRNA vs shRNA – applications and off-targeting

Short interfering RNA (siRNA) and short hairpin RNA (shRNA) are both used in RNAi-mediated gene silencing. In this blogpost, we explore the differences in applications of siRNA and shRNA and compare their capacity for off-targeting.

For a summary of their properties, please refer to Table 1 at the end of  the post.

In what situations should we use siRNA or shRNA?

In terms of application, siRNAs are commonly applied for rapid and transient knockdown of gene expression.

It is performed in cell lines amenable to transfection by liposomes/electroporation and effects typically last from 3-7 days though retransfection can be performed to extend the effect.

The amount of siRNA introduced can be highly controlled and efficiency of gene knockdown is dependent on the levels of siRNA in the cell which is influenced by transfection efficiency and siRNA stability. Knockdown is also influenced by characteristics of the gene. A gene that is highly transcribed for example, may experience less siRNA-mediated downregulation compared to a gene where lesser copies of RNA are produced over time. In addition, a gene which expresses a protein with a very long half-life, may require extended periods of siRNA application to see a knockdown effect.

Due to the transient effect of siRNAs, shRNAs were developed to be used for prolonged knockdown of genes.

As they are introduced by viral vectors, cells that are more difficult to transfect are better targeted with shRNA. Furthermore, promoter-driven expression allows for inducible expression of the shRNA. Depending on the viral vector used – refer to Labome’s post that covers siRNA/shRNA delivery in greater detail – the shRNA may be integrated into the host genome, allowing it to be propagated into daughter cells. This maintains a consistent gene knockdown over several generations. However, knockdown efficiency can decline over time. This is mainly due to varying levels of uptake of the shRNA among cells, with a cell population having lower shRNA expression being over-represented with time.

 

What about RNAi screening?

siRNAs and shRNAs are both used in RNAi screening to identify genes of interest in a studied phenotype. These are performed with siRNA/shRNA libraries that target a large variety of genes. There are two RNAi screening formats commonly used – arrayed and pooled.

siRNAs and shRNAs can both be used in an arrayed screening format. This means that the siRNA(s)/shRNA(s) against each gene is tested in distinct cell populations. Arrayed screens have the advantage of being compatible with various phenotypic readouts and do not suffer from possible reagent cross-talk or challenges associated with deconvoluting data. However, they are more energy and resource-intensive to perform. (See Fig. 2)

The pooled screening format in contrast, applies only with shRNAs. Here, all shRNAs (e.g. a whole-genome shRNA library) are introduced to a single cell population. As low titers of viral vectors are used, each cell in the population is expected to take up one shRNA vector.

With pooled screening, only readouts linked to cell number can be assessed. These include measurements for cell viability or altered expression of a cell surface marker assessed by fluorescence activated-cell sorting. shRNAs targeting genes which impact these readouts are expected to skew the cell population, such that only cells affected by the relevant shRNAs can be identified. This is either through negative selection, where lost cell populations are noted, or positive selection, where cells with certain shRNAs become over-represented.

The resulting cell population is then assessed by PCR, microarray hybridization or next generation sequencing to measure which shRNAs are highly or lowly-represented. The shRNAs are identified usually by means of a DNA barcode present in the vector sequence. Of note, pooled screens take up less resources to perform but require longer assay times to allow for significant changes in the overall cell population to occur.

Fig. 2 Simplified workflow for arrayed and pooled RNAi screening formats

 

Off-target effects with shRNAs?

The use of siRNAs are known to produce several off-target effects but what about shRNAs? Given they are processed the same way as siRNAs, shRNAs are also subject to microRNA-like off-target effects. In addition, because they are expressed from DNA and rely on endogenous machinery to be processed into siRNA, several variations may be introduced not found with introducing siRNA directly. Some potential sources of off-target effects for shRNAs include:

1. Promoter-driven expression. shRNAs are typically controlled with a U6 promoter which drives high levels of transcription via RNA polymerase III. The high shRNA expression levels may saturate endogenous RNAi machinery, contributing to off-target effects. To counter this, shRNAs can be expressed in a context mimicking miRNAs, utilizing RNA polymerase II for transcription instead. This has been found by several groups to reduce the incidence of off-target effects (Grimm et al., 2006, Kampman et al., 2015)

2. Dicer-mediated hairpin processing. shRNAs undergo Dicer-mediated cleavage in the cytosol to remove its hairpin loop. Gu et al., 2012 reported that Dicer cleaves with sufficient heterogeneity to generate multiple sequences. This factor was reported to generate the higher noise levels unique to shRNA screens (Bhinder and Djaballah, 2013). As specificity of Dicer cleavage is influenced by neighbouring loop and bulge structures, care should be taken in shRNA design.

3. Multiple shRNA uptake. During viral transduction, the viral titer is minimized to increase the probability that cells take up a single shRNA vector. However, this does not guarantee that multiple shRNA uptake will not occur. In this event, a combinatorial gene knockdown ensues resulting in a mixed phenotype that may generate false hits.

4. Differences in genomic integration between shRNAs. Varying efficiencies in transfection and genome integration between shRNAs may skew results to over-represent certain shRNAs over others, especially in pooled screens. Furthermore, integration into the host genome may disrupt the function of certain genes, producing more off-targets.

Studies comparing results from siRNA and shRNA screens have found extremely poor overlap, both between and within the reagent-specific screens. Bhinder and Djaballah’s (2013) analysis of results from 30 published RNAi screens (16 siRNA, 14 shRNA) searching for genes that impact cell viability saw no common genes identified across the board. Furthermore, different genes were identified depending on whether the screen used siRNA or shRNA. PLK1 for example, was a prominent hit for siRNA screens but was only marginally represented in shRNA screens. In contrast, KRAS was a top hit among shRNA screens.

Fig. 3 Reagent format of RNAi screens analysed in Bhinder and Djaballah, 2013 Screens were performed either with genome-wide (GW) or focused (FD) siRNA/shRNA libraries. For siRNA screens, Pooled refers to pools of 3 siRNAs applied together compared to Singles where a single siRNA duplex was applied. For shRNA screens, Pooled refers to a pooled format screen (Fig. 2) where ~50, 000 shRNAs were applied to a single cell population. Arrayed refers to arrayed format screen where shRNAs were applied individually (Fig. 2).

Fig. 4 Overlap of hits among genome-wide (left) and focused (right) siRNA screens (Bhinder and Djaballah, 2013) Only 4 common hits detected across the 2 lethal gene lists from genome-wide siRNA screens. In focused siRNA screens, a greater overlap was detected but still limited across the 22 lethal gene lists. PLK1 detected in 9 out of 22 gene lists.

Fig. 5 Overlap of hits among genome-wide (left) and focused (right) shRNA screens (Bhinder and Djaballah, 2013) KRAS was a top hit in shRNA GW screens, appearing in 5 out of 9 lists. In focused shRNA screens, KRAS was present in 15 out of 31 lists. 

Worryingly, an enrichment of gene candidates exclusive to pooled shRNA screens was observed as opposed to arrayed shRNA or siRNA screens. Most of the overlap seen in gene lists (80% global overlaps, 60% after stringent filtering) were specific to pooled shRNA screens. Exclusion of data from pooled shRNA screens would have reduced overlap to a mere 27%. This indicates gene targets obtained from shRNA pooled screens is specific to the technique as opposed to specific gene downregulation.

Furthermore, a greater number of hits were obtained from shRNA screens – 6664 candidates from 40 shRNA gene lists – as opposed to 1525 candidates from 24 siRNA gene lists. This indicates a generally noisier dataset associated with shRNA screens.

Bhinder and Djaballah later performed a head-to-head comparison of an arrayed siRNA and shRNA screen and reported similarly dismal results. Despite using a gain-of-function assay, which tends to yield clearer results, only a 29 hit overlap was seen between siRNA and shRNA libraries which shared 15,068 common genes. Based on a known set of positive controls, siRNAs identified 8 known regulators as opposed to shRNA which only identified 3. Furthermore, predicted siRNA sequences obtained after Dicer-processing of shRNA which corresponded to exactly the same siRNA sequence from the siRNA library yielded different phenotypes. The authors highlight that differential intracellular processing of the shRNA contributes significantly to the discrepancies observed.

It is evident that shRNAs are at risk to greater number of off-target effects than siRNAs. Much care should be taken towards the interpretation of pooled shRNA screens in particular. Secondary validation of gene hits plays an increasingly important role. It is recommended to validate gene hits with siPOOLs (high-complexity, defined siRNA pools) which have a lower off-target profile than single siRNAs or low complexity siRNA pools of 3-4. siPOOL-resistant rescue constructs enable further affirmation that the loss-of-function phenotype is attributed to the target gene. Alternative tools such as compounds, antibodies or gene knockout technologies are also highly recommended.

Want to receive regular blog updates? Sign up for our siTOOLs Newsletter:

Table. 1 Comparison of properties between siRNA and shRNA

siRNA shRNA
Structure 20-25 nucleotide long double-stranded RNA (dsRNA) with 2 nucleotide overhangs at the 3’ end

~57-58 nucleotide long RNA sequence with a dsRNA region linked by non-pairing nucleotides to form a stem-loop structure

Delivery RNA itself with liposome/electroporation-mediated delivery into cells Usually delivered to cells via viral vectors. DNA may be incorporated into host genome depending on viral vector used.
Processing In the cytosol, guide or antisense strand* (shown in blue in Fig. 1) is incorporated into RNA induced silencing complex (RISC). RISC is guided towards RNA transcripts with the complementary sequence to mediate cleavage and subsequent degradation of the transcript.

 

*Note that the sense strand may also load into RISC and mediate off-targeting but incidence of this is reduced by designing siRNA with  appropriate thermodynamic properties (refer to previous blogpost on siRNA design)

In the nucleus, shRNA is transcribed from DNA by either RNA polymerase I or III, depending on the promoter.

Drosha, a member of the ribonuclease III family, processes the RNA transcript of its long flanking single-stranded RNA sequences and the resultant shRNA is exported out of the nucleus by Exportin-5.

 

In the cytosol, the enzyme Dicer cuts off the hairpin loop of the shRNA and releases the functional active siRNA which follows the same downstream processing as siRNAs.

 

Length of expression Varies from 3-7 days. Affected by degradation of siRNA within cell and dilution of effect upon cell division. Expression can be reinstated by re-transfecting the siRNA. If the DNA is stably integrated in the host genome, knock-down is theoretically permanent.
Control of knockdown Easily controlled by varying amount of siRNA introduced. Magnitude of knockdown harder to control as determined by promoter-driven efficiency and shRNA vector uptake. Expression however can be made inducible with Tet-on/off systems.

 

Follow us or share this post:
CRISPR – what can go wrong and how to deal with it

CRISPR – what can go wrong and how to deal with it

CRISPR is a gene editing technique based on tools and principles learnt from the bacterial immune system. Gaining immense popularity world-wide, many are trying to establish CRISPR in their favourite model systems to study gene function. Here, we highlight issues to be aware of when using CRISPR and what one can do to counter or manage them.

To simplify matters, we have classified what could go wrong while performing CRISPR into three main categories, accompanied by associated exclamations one may hear in the process:

  1. “Hmm… I don’t see anything.” – Absence of phenotype
  2. “This is taking wayyy too long.” – Inefficient editing
  3. “What the *@#?!” – Unexpected phenotypes

First, some key terms…

Cas9: The bacterial RNA-guided endonuclease that mediates cutting of the DNA. The most commonly used Cas9 ortholog is from Streptococcus Pyogenes and can be introduced into cells in the form of DNA, mRNA, or protein.

sgRNA: single guide RNA composed of a 17-20 base long guide RNA (gRNA) which hybridizes to its complementary DNA sequence on the genome, defining  the target site. This is often joined to a ~70-80 base long transactivating crRNA (tracrRNA), a constant region that mediates recruitment of Cas9. sgRNAs can be introduced as one unit or in its separate components – gRNA and tracRNA – as DNA or RNA.

PAM: protospacer adjacent motif, a trinucleotide sequence 3’ adjacent to the gene editing site required for Cas9 to bind and mediate cleavage. Sequence is NGG for Cas9 from Streptococcus Pyogenes though NAG is often recognized as well. PAM sequences differ between various forms of Cas enzymes.

 

  1. “Hmm… I don’t see anything.” – Absence of phenotype

The anti-climax of a null result may stem from adaptation where the cell or organism alters other gene pathways to compensate for the loss-of-function of the target gene.

This problem is most visible to those maintaining Drosophila stocks as strength of phenotype typically decreases over multiple generations. The phenomenon is also well-documented in other models such as yeast (Teng X et al., 2013), zebrafish (Rossi et al., 2016, covered in a previous blogpost) and mice (Babaric et al., 2007). A notable Developmental Cell paper recently reported adaptation in cells (Cerikan et al., 2016) where prolonged knock-down (KD) or knock-out (KO) yielded no visible phenotype as opposed to acute KD by RNAi.

Multiple cell passages increase genetic drift, providing opportunities for the system to adapt to counter the disruptive effects of a gene knock-out. It is therefore prudent to preserve early passages of clones during clonal selection and limit multiple passages prior to assay measurement.

Besides adaptation, redundancy may also account for an absence of phenotype. Paralogous genes (i.e. genes closely related in structure or function) often exist in model systems that can fully or partially compensate for the loss-of-function of the target gene. About 50% of mouse genes and at least 17% of human genes have paralogues that may mask loss-of-function phenotypes.

One can find paralogous genes arising from gene duplication with this database and by checking existing literature. If they do exist, a co-knock-out/knock-down approach may be necessary.

 

  1. “This is taking wayyy too long.” – Inefficient editing

Despite the high efficiency of Cas9-mediated cleavage, obtaining the desired gene knock-out can still be a tedious and time-consuming process, with wide-ranging overall efficiencies of 1-79% (Unniyampurath et al., 2016).

These challenges often stem from issues associated with the cell line of choice. Due to many standard cell lines being polyploid (containing multiple copies of chromosomes), every copy of the gene has to be disrupted to ensure a complete knock-out. A process aggravated by the need for a homozygous knock-out. Transfection efficiencies, how well the cell line tolerates clonal selection and the impact of the gene modification on cell viability can also impact outcomes. If performing homology directed repair (HDR) to introduce a new sequence at the cut site, clone screening efforts have to be amplified due to the lower frequency of HDR events compared to indels.

Understanding the characteristics of your cell line and ensuring sufficient numbers of clones are screened is essential to avoid mindless weeks repeating experiments!

Editing efficiency may also be hindered by genomic accessibility. gRNAs targeting transcriptional start sites or promoters were found to be more efficient than intergenic sites due to the open chromatin structure in these areas (Liu X et al., 2016). Numerous design criteria have been recommended to ensure high cutting efficiency but performance of gRNAs may still vary. Therefore it is advisable to use at least 3 sgRNAs per gene to increase chances of success.

Sidenote: Looking for someone who can design CRISPR sgRNAs for you? siTOOLs Biotech’s CRISPR sgRNA design service couples our long-standing experience in off-target filtering with published gRNA design criterion to generate reliable gRNA sequences. Send us your enquiry and we will get back to you.

 

  1. “What the *@#?!” – Unexpected phenotypes

Unexpected results can stem from off-target effects or in some cases, may be a real effect that requires some brain rattling to make sense of.

Off-target effects are still a cause of concern for CRISPR and vary widely with different gRNA sequences ranging from 0 to up to 150 in one report (Tsai et al., 2015). In another study, ~10 to > 1000 off-target binding sites were found that varied with sgRNA sequence (Kuscu et al., 2014).

Toxicity correlated with increased off-targeting (Morgens et al., 2017) and the use of safe-targeting controls (i.e. where gRNAs are directed towards sites where cleavage is predicted to have minimal impact) was recommended. This served as a more appropriate measure of nuclease-induced toxicity as opposed to non-targeting controls that might not lead to cleavage.

Some other strategies to minimize off-targets:

  • Use the Cas9 recombinant protein/mRNA rather than a plasmid or keep DNA transfection amounts low (plasmid-driven prolonged Cas9 expression increased off-targeting events as reported by Liang et al., 2015)
  • Use truncated gRNAs of 17-18 nucleotides
  • Use D10A Cas9 nickase and paired gRNAs
  • Use a Cas9 ortholog with a longer PAM requirement

Despite our efforts to predict off-target effects, two reported sources of potential off-targets make prediction challenging:

a) Single nucleotide variants from clonal heterogeneity

b) Cas9 effects on mRNA translation

 

a) Single nucleotide variants from clonal heterogeneity

Table 1: Spontaneous SNVs and indels generated over clonal selection in human pluripotent stem cells.

Two studies (Smith et al., 2014Veres et al., 2014) carried out in pluripotent stem cells to detect off-targets saw a higher specificity of Cas9 in these cells compared to cancer cell lines but shockingly, rather large clonal heterogeneity (Table 1).  Each clone generated from the parental cell line had on average 100 unique SNVs per clone and 2-5 indels not induced by the gene modification but arising spontaneously during cell culture.

Target and off-target indel frequencies
Number of mismatches Number of genomic sites Cas9 targeting efficiency
0 1 53.9%
1 0
2 0 → 1 36.7%
3 32 ~0.15% per site

Table 2: Editing efficiencies at off-target sites with 0-3 mismatches. Condition of SNV enhancing editing efficiency shown in bold.

Yang et al., 2014 then goes on to demonstrate how an SNV at the wrong place at the wrong time can produce a high-efficiency off-target site. The said SNV corrected a mismatch at an off-target site, reducing mismatch number from 3 to 2, which increased Cas9 –mediated indel frequency to ~37%!

To manage clonal heterogeneity, we recommend performing deep sequencing to fully characterize the knock-out clone and its parental wild-type cell line. Once the locations of SNVs are identified, these can be aligned with potential off-target gRNA binding sites to check for interference. Check locations of identified unique SNVs or indels to see if they are impacting genes that may play a relevant role in your studied phenotype.

b) Cas9 effects on mRNA translation

A Scientific Reports study (Liu Y et al., 2016) reported a worrying finding that Cas9 could be recruited by gRNAs to mRNAs and block their translation. Neither PAM sequences nor Cas9 enzyme activity was required for this and the effect varied with gRNA sequence. Cas9-mediated mRNA translation suppression produced a 30-60% decrease in protein levels, sufficient to impact downstream phenotypes. For example, a gRNA targeting VEGFA with an off-target binding site to the mRNA of oncogene, B3GNT8, produced a nearly 50% drop in B3GNT8 protein levels with a corresponding drop in cell viability. This was partially rescued by overexpressing B3GNT8 with a vector.

It is still unclear to what extent this phenomenon occurs. There have been limited reports on this mechanism so far, but if true, would have a far-ranging impact. The study found gRNAs with single base mismatches at position 8-20 were still able to carry out Cas9-mediated translation repression. This low hybridization stringency requirement would make off-targets impossible to predict.

CRISPR is no doubt a powerful technology, but it still brings many unknowns. After its discovery in the 1990s, RNAi experienced a similar exponential uptake and use by the scientific community. It took several years for the problem of siRNA off-targets to become visible. Unfortunately by that time, enormous resources and energy had been sunk into large RNAi screens, which yielded numerous false hits and difficult-to-interpret data.

Figure 1. Pubmed Citations (1999-2015) with CRISPR or RNAi in Title/Abstract/Summary

Thankfully we now have  siPOOLs, or high-complexity defined siRNA pools (from siTOOLs Biotech). These custom-designed pools of 30 unique siRNAs counter the off-target effects often seen with single siRNAs or low complexity siRNA pools of 3-4 siRNAs (Marine et al., 2012, Hannus et al., 2014). Efficient at 1 nM in standard cell lines, it is the optimal RNAi reagent for highly specific, efficient and robust gene knock-down.

In order not to repeat past mistakes, it is imperative to proceed with caution and use multiple methods to establish gene function.

Want to receive regular blog updates? Sign up for our siTOOLs Newsletter:

References:

Barbaric, I., Miller, G. & Dear, T. N. Appearances can be deceiving: Phenotypes of knockout mice. Briefings Funct. Genomics Proteomics 6, 91–103 (2007).

Cerikan, B. et al. Cell-Intrinsic Adaptation Arising from Chronic Ablation of a Key Rho GTPase Regulator. Dev. Cell 39, 28–43 (2016).

Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677–683 (2014).

Hannus, M. et al. siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Res. 42, 8049–61 (2014).

Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).

Liu, X. et al. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci. Rep. 6, 19675 (2016).

Liu, Y. et al. Targeting cellular mRNAs translation by CRISPR-Cas9. Nat. Publ. Gr. 2–10 (2016). doi:10.1038/srep29652

Marine, S., Bahl, A., Ferrer, M. & Buehler, E. Common seed analysis to identify off-target effects in siRNA screens. J. Biomol. Screen. 17, 370–8 (2012).

Rossi, A. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230–233 (2015).

Smith, C. et al. Whole-Genome Sequencing Analysis Reveals High Specificity of CRISPR/Cas9 and TALEN-Based Genome Editing in Human iPSCs. doi:10.1016/j.stem.2014.06.011

Teng, X. et al. Genome-wide Consequences of Deleting Any Single Gene. Mol. Cell 52, 485–494 (2017).

Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotech 33, 187–197 (2015).

Unniyampurath, U., Pilankatta, R. & Krishnan, M. N. RNA Interference in the Age of CRISPR : Will CRISPR Interfere with RNAi ? (2016). doi:10.3390/ijms17030291

Veres, A. et al. Low incidence of Off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27–30 (2014).

Yang, L. et al. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat. Commun. 5, 1–6 (2014).

Further helpful reading:

Housden, B. E. et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Publ. Gr. (2016). doi:10.1038/nrg.2016.118

 

Follow us or share this post:

Like what you see? Mouse over icons to Follow / Share